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&tmL We apply our 6rst-principles SDPA.RPA scheme to calculate the spin fluctllation 
spectrum as well as lhe phonon and the spin fluctuation Eliashberg functions of the 
lightest rare earth metal scandium. Thew quantities are used Lo evaluate the low- 
temperature electtun mass enhancement. We 6nd hat both terms are sizeable. Together 
with our calculated bandstructure densities oi states at lhe Fermi energy, our results are 
compatible with experimental data for the low-temperature specific heat coefficient 

1. Introduction 

Both the magnitude and the temperature dependence of the electronic specific heat 
coefficient, y, of the lightest rare earth metal scandium exhibits features leading to 
the conclusion that many-body enhancement effects play an important role in this 
substance. Depending on the reference for the calculated bandstructure density of 
states, .(eF), at the Rrmi energy, a whole range of values for the electron mass 
enhancement parameter, A, have been deduced from specific heat measurements by 
using the relation X = y/n(eF) - 1. Whilst the measurements of y show little scatter 
(the numbers obtained by Bang et d (1985) and Flotow and Osborne (1967) are 
10.334 and 10.66 mJ mol-’ K-* respectively), there is a considerable variance in 
the published values for n(eF). According to the work of ?Sang a al (1985). who 
collect bandstructure data for Sc, the value for this quantity varies between 31.80 
(Gopta and Freeman 1976) and 19.84 (Sen and Chatteqee 1980) states Ryd-*/atom, 
giving rise to values for X between 0.87 and 2.01. Even the lowest number in 
this spectrum cannot be explained by electron-phonon coupling alone. From an 
analysis of the measured temperature dependent specific heat, q, up to 600 K, 
Knapp and Jones (1972) estimate A,,, = 0.3. F’apaconstantopoulm et al (1977) 
calculated A,,, within the rigid muffin tin approximation (RMTA) for electron-phonon 
coupling, obtaining A,,, = 0.639. Since their n(cF) = 32.04 leads to X = 0.860, 
a sizeable additional contribution to X must also be postulated within the frame of 
this theoretical treatment. It has been speculated for some time that coupling of 
the electrons to spin fluctuations might provide this extra term. The long-wavelength 
Stoner enhancement, S, of Sc, lying in the range of three to four, gives in fact a hint 
that the amplitudes of the spin fluctuations might be considerable in this substance. 
However, as our previous investigations on the elemental metals Pd and V (Stenzel d 
a1 1988) show, S(0) is not an appropriate measure for the magnitude of the electron- 
spin fluctuation mass enhancement, since fluctuations of all wavevectors within the 
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Brillouin zone (BZ) contribute to this quantity. Ib assess AJpiD, it is necessary to 
calculate the dynamical spin fluctuation spectrum and the electron-spin fluctuation 
coupling function at relevant q points throughout the B Z  

While in previous work we treated magnetic resonance properties of scandium 
(Gotz and Wmter 1993), we concentrate in the present paper on the low-temperature 
electronic mass enhancement coefficient, A, evaluating from first principles both its 
spin fluctuation part, A,im, and its phonon part, A,,,,, in the frame of the SDFA-RPA. 
In section 2 we sketch the formalism, and present the KKR bandstructure in section 
3. Section 4 is devoted to the discussion of our results for the phonon and the spin 
fluctuation contributions to A and we close with a summary in section 5. 

2. Formalism 

'Ib start with the phononic part, A,,,, is determined by minus the first frequency 
moment of the Eliashberg function, azF(w) ,  through the following relation: 

'Ib evaluate a 2 F ( w ) ,  we need to know the wavevector and frequency dependent 
phonon propagator Dz ' , (q ,w) ,  the electron-phonon coupling function 7rq(r, T'), 

and the electron-phonon coupling potential 6V;(r). In terms of these quantities 
a'F(w) is determined through the following equation: 

Here, the space integrals go over the volume of the unit cell and the integral over 
the wavevector q covers the B Z  The indices 7 ,  T' label the atoms in the unit cell. 

In harmonic approximation D;$(q,w) can be expressed by the phonon 
frequencies wqA and the phonon polarization vectors eq,A. Its spectral function, 
D", for positive bequencies reads: 

Using the local representation r = ( p ,  ~ , j )  for the space coordinates the formula 
for 7r reads (Stenzel et a1 1988): 

= ~ ' ( p r ,  p ' ~ ' ; j )  exp(igRj). 
j 

(4) 

Here, the j sum goes over the unit cells of the crystal at positions Rj, g is the 
one-particle electron Green function in bandstructure approximation, and n(cF) is to 
be inserted in states Ryd-lhnit cell. 

In FWTA 6V is given by 

~ V ; ( P )  = ( P , / P ) ~ V ~ ( P ) / ~ P  (5) 
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with V‘(p )  the crystalline muffin tin potential at site T .  Inserting equations (2) to 
(5) into equation (I), we finally obtain 

A bequently used approximation a, equation (6) is the local RMTA (LRhim), 
neglecting all terms in the j sum over the unit cells, except for j = 0, and restricting 
to T = T’. Within the m m  the electronic part of equation (6) may be expressed 
through the phaseshifts, 6{(eF), and the matrix elements of Img(EF) with respect 
to the angular momentum quantum numbers (Gaspari and Gyorffy 1972). In the 
case of cubic symmetry the latter quantities may be expressed through the ratios of 
partial densities of states (Dos) and single-site partial DOS at eF, while in systems of 
lower point symmetry additional terms exist that will be worked out for the hexagonal 
structure in the present paper. 

’Ib treat Alpin, we replace the phonon propagator D” in equation (6) by 
Im~;(pr ,p’r’ ,w) ,  the lattice Fourier transform of the imaginary part of the 
dynamical spin density correlation function and take into account that, due to the 
larger frequency extent of 2,. the coupling function ?yS is energy dependent. In the 
frame of the SDFA-RPA the electron-spin fluctuation coupling potential, ICm, is the 
derivative of the exchange correlation potential V, with respect to the magnetization 
density. Collecting the relevant relations (Stenzel et af 1988), we obtain 

with 

a’ FPh( q, w ) = dp dp’&( p, r ) x i (  pr, p’r’; w )Im xi( p ~ ,  p’ r‘; W )  IC,( p‘ , r’) 
77’ J 

and 

x c e x p ( i q R j ) I m  g(pT,p‘r’Rj; eF)Im g(p’+’R,, pr; I). (9) .~ 
j 

We evaluate xi by solving the following Bethe Salpeter equation: 



Here, R;,(p) is a pdependent energy expansion coefficient of the radial part of the 
single-site electron wavefunction. 

Introducing the matrix +; similarly to $, the expression for AVi, in equation (8) 
may be written as the trace of a matrix product. 

3. The bandstructure 

Results of our scalar relativistic KKR bandstructure calculations for the hexagonal 
structure, using the exchange correlation potential of vDn Barth and Hedin (1972) 
are shown in figures 1 and 2 The Fermi energy falls into the lowest peak of the 
Sc d-band structure. We obtain n(eF) = 30.18 states Ryd-l atom-l and for the 
partial DOS at eF: no = 0.497, n, = 7.64, n2 = 21.38, and nj = 0.656. Most 
important for the dynamical susceptibility is the 0.04 Ryd broad d DOS peak in the 
immediate vicinity of eF, but the structure a15 Ryd above the Fermi energy also has 
some influence on this quantity. The weak dispersion of the d bands for wavevectors 
in the q2 direction is also of great importance for 2, as a glance at figure 2 shows. 

In comparison to the cubic case the p i n t  group of the hexagonal structure (D,,,) 
consists of one- and two-dimensional irreducible representations that can be partly 
built up by more than one s p d c  angular momentum. w e  representations and their 
bases for the D,, local symmetry up to 1 = 3 are listed in table 1.) As a consequence, 
the on site one-particle Green function, g;,:,,,, contains finite matrix elements that 
are diagonal in the angular momenmm indices and therefore expressible through 
partial DOS and matrix elements that are not. Both kinds of matrix element, leading 
to important contributions to A,,, are displayed in table 2. For the phaseshifts at cF 
we obtain: 6, = -0.469, 6, = -0.098, SZ = 0.373, and 6, = 0.0025. 

Tnbk t Representations and their bases for D,b local symmetry. Yl,,, denotes real 
spherical harmonics. me representations are according to Bradley and Clacknell (1972). 

Reo-enlatian Ease? 
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Figure l. The s, p, d, and f palfial DOS and the total cos (sum) for Sc calculated for 
the U )  lowest valence bands. 'The wlfical tine at 6 = 0.437 Ryd designates the Fermi 
energy. 

r K M  r~ H L  A 

Figure 2 'The lowest U )  valence 
bands of Se along some sy"et ly 
direclions within the WBZ The 
Fermi surface ( e ~  = 0.437 Ryd) 
ii built up  by bands 3 and 4. 

4. Results 

4.1. The phonon connibutwn 

Due to a well known relation, derived by Gaspari and GyorRy (1972), the matrix 
elements of the electron-phonon coupling potential between the radial parts of 
the single-site electron wavefunctions in equation (6) may be expressed through 
phaseshifts at ep Introducing the symbols n["(eF) for the single-site partial DOS, and 



1726 W G3tz and H Wwer 

lhbk 2. The matrix elemen6 nf, diagonal in angular momentum, and "E!,, offdiagonal 
in angular momentum, of the on site one-particle Green function, gr,$m,, for the 
irreducible represenlalions, I', of Ihe Dsb p i n 1  group. Tne values of n and fl are defined 
b~ nf = ( 2 / * )  Cm(r) Im gtm:rm and Q&, = P/*) CMr),myy) Im $,,,!,m,. 
respectively. The numben for the 6 y " e u y  adapted ws up to 1 = 2 gwen ly h d a  
and Zrakura (1982) arc in states Ryd-'/(atom spin dimension of Ihe representation). 
Tbey add up to a total DOS at cp of 2980 a l e s  Ryd-lbtom and thus lead 10 a lower 
value for X Ihan cited in Ihe paper of Bang et d (1985). 

n 0 

1 nr  1 nf 1 1' Q f r 1  

o A: 0,4969 3 q a m  o 2 A; -a2767 
1 % 208% 3 E' am19 o 3 A; -a1608 
1 E' s.sm 3 E" 0.1168 2 3 A; -a6732 
2 A; 6.9063 I 3 % -a0345 

3 A: 0.2353 2 3 E' -a2276 

2 E' 10.2074 I 2 E' 4.6993 
2 E" 4.2618 1 3 E' 0.0573 

the Gaunt numbers with respect to real spherical harmonics, G, we write equation 
(6) for the Eliashberg function in thc following, more explicit form: 

The cells j in equation (12) may be grouped into shells around the central cell 
( j  = 0), whereby the coordinates Rj of a given shell are linked to each other by 
point group symmetry operations. As shown previously for a number of systems 
(Glotzel et d W9), the j sum converges within a range of the order of 10 shells 
and in many cases even restriction to j = 0 and r = 7' (local approximation) yields 
sensible results. If we calculate the electronic quantity 7 ,  as defined by Gaspari and 
Gyorffy (1972), in local approximation, retaining only the terms expressible through 
partial DOS, we obtain: qp"' = 2.14 eV A-', while inclusion of the other terms 
reduces it to 1.65 eV A-'. Using table 2 and equation (12) it is easy to write down 
the individual contributions to q. 

In order to evaluate the Eliashberg function according to equation (12) we need 
to h o w  the phonon spectrum. Figure 3 shows the phonon Dos, as obtained with the 
help of a Born-von Karman force constant model (Reichardt 1992) as fitted to the 
measured phonon dispersion curves of Pleschiutschnig ef QI (1991). The Eliashberg 
function resulting from the local approximation is shown in figure 4(a) (dotted curve). 
At small frequencies it is proportional to w ,  leading to a finite value of the integrand 
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in equation (1) for ,Aphon (dotted curve in figure 4(b)) at w = 0. The non-local 
function a 7 F  on the other hand, evaluated by including 10 shells of cells (full curve 
of figure 4(u)), behaves nearly like wz in the low-frequency regime and leads to a 
very small integrand in equation (12) (full curve in figure 4(b))  in the limit w = 0. 
The biggest differences between the integrands for the local approximation and the 
non-local treatment occur at frequencies up to 10 meY We obtain Xpbon = 0.470. In 
the local approximation its value is 0.556. 

, 

::$ ' 

Figure 3. m e  phonon density , of slates of Sc as obtained bj 
Plerhiurschnig er nl (1991). 

:::U , , , \ I  
0.03 

0 1 2 3 4 5 6 
a n e w  [THz) 

4.2 The spin fructulllion contribution 

Using our KKR bandstructure data, we evaluated x,"(w) and x;(w) for a number of q 
points in the irreducible wedge of the EZ (IWBZ). For illustrational purposes we discuss 
the spectral functions of the real space double Fourier transforms, Im x s ( q ,  q; w). As 
discussed in previous work (G6tz and Wmter 1993), x5 of Sc depends considerably 
on the exchange correlation potential used to construct ICx. This is in contrast to 
the bandstructure. We employed the potential according to Vosko er al (1980), since 
it leads to the best agreement between the experimental and the calculated total 
homogeneous low-temperature susceptibility (Gdtz and Winter 1993). 

The amplitudes of Imx" and I m y  vary rapidly as a function of wavevector. 
Their low-frequency peaks at small q are due to intraband transitions within bands 
3 and 4 crossing the Fermi level. On increasing wavevectors interband transitions 
within the high-Dos structure in the vicinity of 0.1 Ryd around eF come into play. 
Our susceptibility calculations concentrate on the q,-q, plane. The results for small 
q, (9, = 0.05 DU) are shown in figure 5(a).  Intraband and for growing values of 
q, also interband transitions near eF @e rise to the low-energy peak, ranging to 
w = 0.008 Ryd at qz = 0 and to w = 0.03 Ryd at the BZ boundary. 'Ransitions 
into the higherenergy d band structures of the DOS show up only faintly in the 
susceptibility curves. The amplitudes of Im 9 increase for finite values of q, and 
peak half way to the EZ boundary, where they are still substantially higher than at 
q, = 0. The qdependent Stoner enhancement parameter, S(q )  (table 3), behaves 
similarly, shooting up to a maximum value of 676 along this path. This property is 
due to the shallow dispersion of bands 3 and 4 in the q, direction. Curves for q5 = 0 
complete figure 5(u). In figure 5(b) we display some results for q vectors in the 
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Figure 4 (U) The Eliashterg function m2F(w) amrding to (12) laking into amount 
10 shells of cclls (full curve). nte dotted cuwe is the local approximation of a Z F ( w ) .  
(b) Integrand d (1) to tvaluate A+. obtaincd from the non-local (full "e) and the 
local (dotted cum) funmion m'F(w). 

q, direction. On increasing q2 the amplitude of the low-frequency peak decreases, 
whereas a second peak due to transitions into the d-band structure around 0.15 Ryd 
above the Fermi energy builds up. Altogether, however, the magnitude of the spin 
fluctuations, including the Stoner enhancement, diminishes. The Same observations 
can be made for the corresponding curves at qz = 0.15 DU (figure 5(c)) and for qz 
on the BZ boundary (figure 5(d)). In all cases the amplitudes at finite q, exceed 
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those at q, = 0. Curves obtained for g = (0,0.217,0.313) are similar to those at 
q = (0.25,0,0.313), exhibiting slightly larger amplitudes. 

Tnbk I Stoner enhanoemen1 factors, S, tor several q pints within the IWBZ me values 
of p are m UniD of 2rrla. qEz = 0.3134 DU. 

0 0 qy 4.79 0.05 0 0 287 
0.05 o afi 609 0.05 o q!z 6.34 

a25 0 UBZ 3.68 0 0.217 4.02 
a25 0 0 254 025 0 ais 3.16 

._ 
050 0 0 1.89 050 0 &is 20s 
050 0 qF 1.70 2/3 0 0 1.72 

The polarization functions s’(q,q;w),  for the same wave vectors are collected 
in figure 6. The large values of this quantity are restricted to frequencies below 
0.05 Ryd, limiting the important contributions of the spin fluctuations to A,,, to 
the low-frequency regime. The amplitudes of ?yp also decrease rapidly on growing 
wavevectors, an effect being counteracted by the increasing phase space weight The 
cuwes for the g- and wdependent spin fluctuation Eliashberg functions, shown in 
figure 7, follow straightforwardly from equations (8) and (9) and figures 5 and 6 

Tb calculate A,, approximately, we evaluated the following integral over the 
q,-4, plane: 

(13) 

Assuming approximate isotropy for this kind of integral with respect to the azimuthal 
angle 4 within the BZ we equate F, to A,,, and obtain A,, = 0.42. 

So both mechanisms together yield X = Apbon + Aspi, = 0.89, that has to be 
compared to A = 0.97, a number resulting from the low-temperature specific heat 
measurements of Bang ef a1 (1985) and our calculated DOS at cF. 

5. Summary 

In this paper we have shown that the electronic contribution to the low-temperature 
specific heat of Sc can only be understood by treating both the phonon and the 
spin fluctuation contributions on the same footing. Our value for Xphon lies between 
the number 0.3 deduced by Knapp and Jones (1972) through the extrapolation of 
high-temperature specific heat data on the one side and the theoretical number 0.64, 
as obtained by Papaconstantopoulos et al (1977) on the other side. Uncertainties in 
the Knapp-Jones value come from the fact that the high-temperature specific heat 
data show some scatter and that not only the phonon but also the spin fluctuation 
part depends on temperature. Furthermore, these authors use a model phonon DOS 
instead of the measured one. In contrast to Papaconstantopoulos cf a[, who treated 
Sc in a hypothetical BCC structure, our calculations have been performed for the real 
HCP structure, yielding an q value considerably below theirs. On the other hand, our 
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F$ure 6 The eleclron-spin Ruciuaiion coupling function, x'(q, q; w )  for some values 
of p in the qm-qz plane. 

Figure 7. 'The spin fluctuation Eliashberg function, oZFsPi0(q; w )  for some values of q 
in the gs-qs plane. 
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use of the true phonon spectrum shows that the low-frequency transverse phonon 
modes enter the equation for A,,, with a weight larger than accounted for by a 
theory expressing the phonons through some Debye frequency. As a consequence, 
our effective value for 1/(w2) in McMillan’s formula (1968) exceeds that implied by 
F’apaconstantopoulos e? ul, leading altogether to a sizeable number for A,,,,,. 

As expected from previous qualitative considerations, we found that the spin 
fluctuations yield a substantial contribution to A. The spin fluctuation mass 
enhancement of Sc is in fact considerably larger than found for Pd (Stem1 et ul 
1988) that is being considered as the most prominent example for a highly Stoner 
enhanced paramagnetic elemental metal. The effect in Sc is so sizeable because 
in this substance xs has large amplitudes in a bigger portion of q space than in 
Pd. We have shown that 9 of Sc is strongly wavevector dependent in the BZ and 
inclusion of more q points could somewhat change, probably somewhat increase, the 
calculated number for A,,.,. Some uncertainly concerning the exact value of A,,, is 
also caused by the fact that p depends non-negligibly on the exchange correlation 
potential chosen. ?b remove this uncertainty, evaluation of ground state energies for 
the partly spin polarized homogeneous electron gas in addition to calculations for 
fully spin polarized or paramagnetic systems would be highly desirable. Nonetheless, 
our ab hrZo results for the phonon and spin fluctuation Eliashberg functions and the 
electron mass enhancement are reasonably near to data deduced from experiment 
and calculated bandstructure DOS. Our results also give an understanding of why-in 
spite of a sizeable X,,,,-superconductivity k not observed in this system. 
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